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ABSTRACT: Particle filters avoid parametric estimates for Bayesian posterior densities, which alleviates Gaussian as-
sumptions in nonlinear regimes. These methods, however, are more sensitive to sampling errors than Gaussian-based tech-
niques such as ensemble Kalman filters. A recent study by the authors introduced an iterative strategy for particle filters
that match posterior moments}where iterations improve the filter’s ability to draw samples from non-Gaussian posterior
densities. The iterations follow from a factorization of particle weights, providing a natural framework for combining parti-
cle filters with alternative filters to mitigate the impact of sampling errors. The current study introduces a novel approach
to forming an adaptive hybrid data assimilation methodology, exploiting the theoretical strengths of nonparametric and
parametric filters. At each data assimilation cycle, the iterative particle filter performs a sequence of updates while the prior
sample distribution is non-Gaussian, then an ensemble Kalman filter provides the final adjustment when Gaussian distribu-
tions for marginal quantities are detected. The method employs the Shapiro–Wilk test to determine when to make the tran-
sition between filter algorithms, which has outstanding power for detecting departures from normality. Experiments using
low-dimensional models demonstrate that the approach has a significant value, especially for nonhomogeneous observation
networks and unknown model process errors. Moreover, hybrid factors are extended to consider marginals of more than
one collocated variables using a test for multivariate normality. Findings from this study motivate the use of the proposed
method for geophysical problems characterized by diverse observation networks and various dynamic instabilities, such as
numerical weather prediction models.

SIGNIFICANCE STATEMENT: Data assimilation statistically processes observation errors and model forecast
errors to provide optimal initial conditions for the forecast, playing a critical role in numerical weather forecasting. The
ensemble Kalman filter, which has been widely adopted and developed in many operational centers, assumes Gaussianity
of the prior distribution and solves a linear system of equations, leading to bias in strong nonlinear regimes. On the other
hand, particle filters avoid many of those assumptions but are sensitive to sampling errors and are computationally ex-
pensive. We propose an adaptive hybrid strategy that combines their advantages and minimizes the disadvantages of
the two methods. The hybrid particle filter–ensemble Kalman filter is achieved with the Shapiro–Wilk test to detect the
Gaussianity of the ensemble members and determine the timing of the transition between these filter updates. Demon-
strations in this study show that the proposed method is advantageous when observations are heterogeneous and when
the model has an unknown bias. Furthermore, by extending the statistical hypothesis test to the test for multivariate
normality, we consider marginals of more than one collocated variable. These results encourage further testing for real
geophysical problems characterized by various dynamic instabilities, such as real numerical weather prediction models.

KEYWORDS: Kalman filters; Numerical analysis/modeling; Data assimilation; Nonlinear models

1. Introduction

For convection-permitting numerical weather prediction
systems, assimilating remotely sensed observation networks
(e.g., radar and cloudy radiance measurements) is required to
depict mesoscale weather features accurately (e.g., Vukicevic
et al. 2004; Stengel et al. 2009; Privé et al. 2013). It is well
known that strongly nonlinear model dynamics and observa-
tion operators, however, can induce bias in Gaussian-based
data assimilation methods that are commonly used for numer-
ical weather prediction (e.g., Bocquet et al. 2010). Since en-
semble Kalman filters (EnKFs; Evensen 1994; Houtekamer
and Mitchell 1998; Evensen and van Leeuwen 2000) approxi-
mate prior densities using a Gaussian and solve a linear system

of equations to adjust a sample of model states to fit the poste-
rior mean and covariance, strongly nonlinear model dynamics
and measurement operators can lead to bias, which impedes
achieving accurate convection-permitting initial conditions for
next-generation weather forecast models. This limitation is ap-
parent for multiscale weather prediction systems that exhibit
large uncertainty in smaller scales, or when observations are
sensitive to cloud processes (e.g., Poterjoy et al. 2017; Poterjoy
2022a). As a result, most infrared satellite data assimilation
studies mainly focus on clear-sky observations (e.g., Errico
et al. 2007; Fabry and Sun 2010; Minamide and Zhang 2017;
Honda et al. 2018). Therefore, developing new data assimila-
tion methods that mitigate Gaussian assumptions is an active
area of research.

One strategy, which has gained momentum in recent years,
is to apply dimension-reduction procedures (viz., localization)
to particle filters (PFs; Penny and Miyoshi 2016; Poterjoy andCorresponding author: Kenta Kurosawa, kkurosaw@umd.edu
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Anderson 2016; Poterjoy et al. 2017, 2019; Potthast et al.
2019). PFs avoid the parametric estimation of Bayesian poste-
rior densities, thus providing great flexibility for solving a
range of complex data assimilation problems. These methods,
however, are more sensitive to sampling errors than EnKFs.
As such, computational limitations pose a major obstacle,
which has limited research examining the potential of PFs for
operational weather prediction. Incorporating statistics from
a large number of high-resolution ensemble members into the
data assimilation step is one of the most effective ways to
mitigate the effects of sampling errors, but this strategy is not
often tractable.

Given the challenges discussed above, a natural progression
is to combine PFs with methods that rely on parametric den-
sity estimates when appropriate. Several papers have pro-
posed to hybridize PFs with EnKFs (Stordal et al. 2011; Frei
and Kunsch 2013; Slivinski et al. 2015; Chustagulprom et al.
2016; Grooms and Robinson 2021) and with variational meth-
ods (Morzfeld et al. 2018). These methods are remarkably
accurate for cases of “moderate nonlinearity,” which are char-
acteristic of situations with a non-Gaussian priors but Gaussian-
like posterior distribution (Metref et al. 2014; Morzfeld and
Hodyss 2019; Grooms and Robinson 2021). For example, Frei
and Kunsch (2013) introduced a procedure that makes a con-
tinuous transition between the ensemble and the particle
filter update by factoring the likelihood. They choose a
“splitting factor” to ensure that an effective ensemble size
is maintained within a certain tolerance of a user-specified
threshold. Based on this approach, Chustagulprom et al.
(2016) developed a method to hybridize the general linear
ensemble transform filter (LETF) framework and PFs, which
can use observation-space localization and avoid linear as-
sumptions for observation operators. Grooms and Robinson
(2021) also introduced a filter that combines PFs with EnKFs,
which is generally similar to Frei and Kunsch (2013) and
Chustagulprom et al. (2016) in that it factors the likelihood.
This method, like others, is effective for problems character-
ized by medium nonlinearity in model dynamics or measure-
ment operators. In these papers, the value of the splitting
factor is determined adaptively by the effective ensemble size.
This choice is a heuristic one, thus motivating additional re-
search into how to optimally combine PFs with EnKFs. For
example, Nerger (2022) propose a method for estimating hy-
brid coefficients that is based not only the effective ensemble
size but also the kurtosis and skewness of the ensemble. This
method still requires the tuning of hyper-parameters, but
generates more accurate filter estimates than using effective
ensemble size alone. As mentioned in Chustagulprom et al.
(2016), a more powerful and computationally feasible alter-
native is to adopt Kullback–Leibler divergence (KL diver-
gence; Kullback and Leibler 1951) as a means of identifying
proper choices of prior error distribution. This approach is
one of the most frequently used objective functions to mea-
sure deviations from Gaussianity in forecast error distribu-
tion for weather models (Kondo and Miyoshi 2019; Li et al.
2019; Ruiz et al. 2021; Pimentel and Qranfal 2021). How-
ever, it is difficult to measure non-Gaussianity by the KL di-
vergence for high-dimensional systems when the ensemble

size is small or when a strange attractor makes numerical
convergence and proper definition of the continuous limit
complicated (Bocquet et al. 2010).

In this study, we introduce a novel approach to forming an
adaptive PF–EnKF data assimilation methodology, which ex-
ploits the theoretical strengths of nonparametric (PF) and
parametric (EnKF) filters. For this purpose, we use a recently
proposed PF (Poterjoy 2022a,b), which introduces an iterative
strategy for PFs that match posterior moments. For this PF,
iterations improve the filter’s ability to draw samples from
non-Gaussian posterior densities despite fitting a limited num-
ber of moments. The iterations follow from a factorization of
particle weights, which also provide a straightforward means
of combining PFs with EnKFs to reduce the impact of sam-
pling errors. To achieve the adaptive mixed methodology at
each data assimilation cycle, we repeat the iterative PF update
while the prior sample distribution is non-Gaussian, and up-
date with EnKF when Gaussian distributions for marginal
quantities are detected. Here, we introduce a statistical hy-
pothesis testing approach to determine when to make this
transition between filter algorithms. Several papers on data as-
similation use statistical hypothesis tests for normality to mea-
sure the difference between the prior or posterior distribution
and the normal distribution (e.g., Bocquet et al. 2010; Poterjoy
2016). However, research of incorporating a normality test di-
rectly into assimilation processes is unexplored.

The current study first compares the power of several hy-
pothesis tests by performing Monte Carlo simulations of data
generated from choice distributions that are often used to
characterize errors. Then we examine the newly developed
mixed hybrid methodology employing the Shapiro–Wilk test
(Shapiro andWilk 1965), which has outstanding power among
omnibus tests for detecting departures from normality (e.g.,
Srivastava and Hui 1987; Mendes and Pala 2003; Farrell et al.
2007; Villaseñor and González-Estrada 2009). Using the hy-
pothesis testing approach allows us to accurately detect Gaus-
sianity, even with small ensemble sizes, and explore possibilities
other than effective ensemble size and the KL divergence for
determining the splitting factor adaptively.

The manuscript is organized in the following manner. In
section 2, we briefly review the four well-known normality
tests and compare the power of the tests. Section 3 introduces
a statistical hypothesis testing approach to forming an adap-
tive PF–EnKF hybrid. We discuss the results and findings of
numerical experiments conducted using low-dimensional toy
models in section 4. The last section discusses major findings
from this study.

2. Power comparisons of four normality tests

The assumption of a normal distribution is often an under-
lying premise of many academic fields and studies, including
data assimilation. When the assumption of normality is vio-
lated, interpretations and inferences may lack reliability and
validity. There are three commonly used procedures for eval-
uating whether a random independent sample comes from a
normal population: graphical methods (histograms, box plots,
Q–Q plots), moment-based methods (skewness and kurtosis),
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and formal normality tests. In particular, a significant amount
of normality tests have been proposed, and several studies
have already compared their power (e.g., Dufour et al. 1998;
Thadewald and Büning 2007; Razali andWah 2011; Saculinggan
and Balase 2013). In this section, we compare the power of
four well-known formal tests of normality: Shapiro–Wilk test
(SWT; Shapiro and Wilk 1965), Kolmogorov–Smirnov test
(Kolmogorov 1933; Smirnov 1939), Lilliefors test (Lilliefors
1967), and Anderson–Darling test (Anderson and Darling
1954). The following subsections briefly review the four nor-
mality tests, and describe the simulation procedure.

a. Methodology for the four hypothesis tests

1) SHAPIRO–WILK TEST

The normality test introduced by Shapiro and Wilk (1965)
is the first test to detect departures from normality with skew-
ness, kurtosis, or both (Althouse et al. 1998). It has become
the most potent omnibus test in most situations because of its
good power properties compared to a wide range of alternative
tests. The basic idea behind SWT is to measure the goodness of
fit of a straight line to a normal Q–Q plot (linear regression).
Given an ordered random sample, x1 , x2 , · · · , xn, the origi-
nal SWT statistic is defined as

W 5

∑
n

i51
aixi

( )2
∑
n

i51
(xi 2 x)2

, (1)

where x is the sample mean, and ai is the expected values of the
order statistics of independent and identically distributed ran-
dom variables sampled from the standard normal distribution:

ai 5 (a1, …, an) 5
mTV21

(mTV21V21m)1/2 , (2)

where m5 (m1, …, mn)T. Here, the vector m consists of the
expected values of the order statistics of independent random
variables with identical distributions that are sampled from a
normal distribution, and V is the covariance matrix of those
order statistics.

The null hypothesis of SWT is that the data originate from
a normally distributed population. Small values of W lead to
the rejection of the null hypothesis, where 0 # W # 1. The
original SWT was limited to a sample size of 50 or less. Royston
(1982) extended SWT to large samples and provided an approx-
imation of the test statistic W, and Royston (1983) suggested a
test for multivariate normality based on SWT. Royston (1992)
arrived at an improved approximation to the weights, which al-
lows SWT to effectively detect departures from multivariate
normality for smaller sample sizes. Last, Royston (1995) intro-
duced the FORTRAN algorithm AS R94, which is used in the
current study. The algorithm includes a scaling process that sets
the mean of the sample to zero and a centering process that sets
the variance of the sample to one. Therefore, the algorithm al-
lows the results to generalize not only to the standard normal
distribution, but also to a normal distribution with a nonzero
mean and nonunit variance.

2) KOLMOGOROV–SMIRNOV TEST

Kolmogorov–Smirnov test was first proposed by Kolmogorov
(1933) and then improved by Smirnov (1939). The one-sample
Kolmogorov–Smirnov test is a nonparametric test of the null
hypothesis that the population cumulative distribution function
(cdf) of the data is equal to the hypothesized cdf. Given an or-
dered random sample, the statistic is defined as

D 5 max
x

[|F*(x) 2 Fn(x)|], (3)

where F*(x) is the cdf of the hypothesized distribution, and
Fn(x) is the empirical cdf. When the statistic value D is signifi-
cant, the hypothesis that the sample comes from a normally
distributed population is rejected.

3) LILLIEFORS TEST

Kolmogorov–Smirnov test is appropriate when the hypoth-
esized distribution parameters are completely known because
the null distribution must be completely specified. In contrast,
Lilliefors test, which is a modification of Kolmogorov–Smirnov
test introduced by Lilliefors (1967), is a goodness-of-fit test for
situations where the parameters of the null distribution are un-
known and have to be estimated. Given an ordered random
sample, the Lilliefors test statistic is defined as

D 5 max
x

[|F*(x) 2 Sn(x)|], (4)

where F*(x) is the cdf of the hypothesized distribution, and
Sn(x) is the empirical cdf. The Lilliefors test statistic is the
same as the Kolmogorov–Smirnov test statistic, but the tables
of critical values of the two tests are different, leading to dif-
ferent conclusions and decisions. In Kolmogorov–Smirnov
test, we must completely give the null distribution. On the
other hand, Lilliefors test is a two-sided goodness-of-fit test
and is powerful when the parameters of the null distribution
are unknown.

4) ANDERSON–DARLING TEST

Anderson–Darling test, introduced by Anderson and
Darling (1954), is a modification of the Cramer–von Miles
test (Cramér 1928). The Anderson–Darling test statistic is
defined as

n
�‘

2‘
[Fn(x) 2 F(x)]2w(x)dF(x), (5)

where n is the sample size, w(x) is a weight function, F(x) is
the hypothesized distribution, and Fn(x) is the empirical cdf.
The weight function is defined as

w(x) 5 {F(x)[1 2 F(x)]}21, (6)

and Arshad et al. (2003) suggested the following formula as
the test statistic of Anderson–Darling test:

A2
n 5 2n 2 ∑

n

i51

2i 2 1
n

{ln[F(Xi)] 1 ln[1 2 F(Xn112i)]}, (7)
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where X1 , X2 , · · · , Xn are the ordered sample data
points. The weighting function (6) is more sensitive to outliers
because the weights of the observed values at the edges of the
distribution are larger. Therefore, it is especially suited for de-
tecting deviations from normality at the tails of the distribution.

b. Simulation procedures

Monte Carlo simulations are the most commonly used ap-
proaches to compare and evaluate the accuracy of a hypothe-
sis test in detecting the degree of contamination by outliers
and the test power with respect to sample size. Following pre-
vious studies, we use Monte Carlo simulations to evaluate the
power of SWT, Kolmogorov–Smirnov test, Lilliefors test, and
Anderson–Darling test statistics in testing whether a random
sample of n independent observations is obtained from a pop-
ulation with a normal N(m, s2) distribution. Several papers
have already shown the superiority of SWT over the other
tests (e.g., Mendes and Pala 2003; Razali and Wah 2011).
Thus, the simulation in this section focuses on a larger selec-
tion of distributions than previous studies, which are moti-
vated by the diverse shapes of error distributions found for
geophysical models and observing systems, and aims to recon-
firm the superiority of SWT over the other tests.

As summarized in Table 1, we examine the following five
cases of nine distributions to cover a variety of standardized
skewness (

����
b1

√
) and kurtosis (b2): N(0, 1), U(0, 1), Beta(2, 2),

Logistic(0, 1), t(5), Weibull(3, 5), Beta(2, 4), Gamma(0, 1),
and g2(10). The values of

����
b1

√
and b2 for each distribution are

summarized in Table 1. For each distribution, we set the sig-
nificance level at 0.05, the sample sizes at n 5 5, 20, 40, 100,
300, 500, 1000, and the number of trials at 100000. The null
and alternative hypotheses of the four tests are as follows:

H0: The distribution is normal

H1: The distribution is not normal:

As summarized in Table 2, the “test power” (true positive) of
a hypothesis test is the probability that the test correctly re-
jects the null hypothesis when the alternative hypothesis is
true. On the other hand, the “type I error” (false positive) is
the error of rejecting the null hypothesis when it is actually true.
Therefore, if a sample is taken from N(0, 1) population, the
number of rejected H0 hypotheses is the probability of a type I
error (case A in Table 1). In contrast, if the samples are from a

population that is not normal distribution, the number ofH0 re-
jected is the power of the test (cases B–E in Table 1).

In Table 2, the probability of a type I error occurring is
denoted by a and the probability of a type II error by b. The
probability of both the type I and type II errors should be
small. However, it is impossible to make both small because
the risk ratios a and b are in a trade-off relationship. Gener-
ally speaking (in society), committing a type I error is often
a more serious problem. Moreover, as discussed in detail in
section 3, in the current study, we prefer erring on the side of
a lower type I error in order to avoid the use of an EnKF
when the distribution is truly non-Gaussian. This is because
the PF update can provide adequate estimates for both non-
Gaussian or Gaussian prior distributions; the same cannot be
said about the EnKF. Therefore, the correct procedure for hy-
pothesis testing is to determine the acceptable risk rate a in
advance, and then select the hypothesis test method with the
highest test power 1 2 b among them. Hence, in the current
study, we focus on the type I error for N(0, 1) and on the test
power for the other distributions (cases B–E in Table 1); We
will not look at the type II error and specificity in this study.

c. Results

Figure 1 shows the variation of the type I error (Fig. 1a)
and test power (Figs. 1b–i) with the sample sizes n for the
four tests for each distribution when a 5 0.05. When the dis-
tribution is N(0, 1), all four tests generally achieved a 5 0.05.
In the case of the symmetric distributions (

����
b1

√
5 0 ; Figs. 1b–e),

SWT is the best, followed by Anderson–Darling test, Lilliefors
test, and Kolmogorov–Smirnov test. However, all tests have low
power when the sample size is less than 100. In particular, when
b2 is greater than 3, the power of Kolmogorov–Smirnov test is
significantly inferior to the other three (Figs. 1d,e). All other
tests can attain 80% power when the sample size is 1000. The
power for the asymmetric distributions (

����
b1

√
Þ0 ; Figs. 1f–i) is

also highest for SWT, followed by Anderson–Darling test, Lillie-
fors test, and Kolmogorov–Smirnov test. For the Weibull(3, 5)
distribution, the overall power is low because the kurtosis b2 is
close to 3 (Fig. 1f). In the other cases, however, (Figs. 1g–i),
SWT and Anderson–Darling test require 200 samples to achieve
90% power, while Kolmogorov–Smirnov test requires 500 sam-
ples; Lilliefors test shows power for sample sizes between these
two numbers.

The overall results show that in all cases the power of SWT
is superior to the other tests for small sample sizes, which is

TABLE 1. Classification of cases by skewness and kurtosis of the
distribution.

Case
Skewness (

����
b1

√
),

kurtosis (b2) Distributions

A
����
b1

√
5 0, b2 5 3 N(0, 1)

B
����
b1

√
5 0, b2 , 3 U(0, 1), Beta(2, 2)

C
����
b1

√
5 0, b2 . 3 Logistic(0, 1), t (5)

D
����
b1

√
Þ0, b2 , 3 Weibull(3, 5), Beta(2, 4)

E
����
b1

√
Þ0, b2 . 3 Gamma(2, 2), x2(10)

TABLE 2. Definitions of terminologies in a statistical test.

Decision

Accept H0 Reject H0

Null hypothesis
H0 is

True Specificity Type I error
“True negative” “False positive”
Probability: 1 2 a Probability: a

False Type II error Test power
“False negative” “True positive”
Probability: b Probability: 1 2 b
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the regime of interest for ensemble data assimilation applied to
weather models. This result is generally consistent with the
results of many other previous studies mentioned before.
Therefore, this paper uses SWT to detect Gaussianity in the
new hybrid method hereafter. Note that “failing to reject the
null hypothesis” is not the same as “accepting the null hypoth-
esis.” In such a case, it is still not exactly clear whether the null
or alternative hypothesis is correct. For simplicity, this study
interprets the null hypothesis to be that “the samples are from
a population that follows a normal distribution.” If the null hy-
pothesis of SWT is not rejected then the samples are assumed
to come from a Gaussian distribution.

3. Implementation with the local particle filter

This section presents the mathematical framework for im-
plementing the adaptive PF–EnKF hybrid method by embed-
ding SWT, the most powerful statistical test in the previous
section, into the local PF. For the purposes of the adaptive
hybrid methodology, the current study uses the recently
proposed PF by Poterjoy (2022b, hereafter P22), which in-
troduces an iterative strategy. We briefly describe the parts
of PF that are relevant to the implementation of the pro-
posed method.

The local PF operates by assimilating observations with
independent errors sequentially and combining sampled

particles and prior particles for each observation. By seri-
ally processing an observation y in a sequence of observa-
tions and updating particles after each observation space
sampling step, posterior particles can be adjusted in a manner
consistent with bootstrap sampling. The nth updated particle
xny is represented by the linear combination of the resampled
particle xkn , conditioned on all observations before y, and the
prior particle xn as follows:

xny 5 xy 1 r1 + (xkn 2 xy) 1 r2 + (xn 2 xy), (8)

where kn is the index of each sampled particle, and xy is the
localized posterior mean accumulating the full weight of all
observations up to y. r1 and r2 are vectors of coefficients that
ensure the update satisfies the posterior mean and variance of
marginals everywhere in state space}as depicted by impor-
tance weights.

Poterjoy et al. (2019) introduced several filter stabilization
strategies in the PF of Poterjoy (2016) to avoid particle degen-
eracy. In particular, regularization and tempering are effective
methods when sampling errors are large, and the sample size
is small. Regularization is equivalent to increasing the particle
weights up to a power b by inflating the observation error
variance. This regularization allows the particles to acquire
a specific “effective sample size Neff,” and is particularly
helpful in stabilizing the filter when all particles are far

FIG. 1. (a) Type I error and (b)–(i) test power of Shapiro–Wilk test (SW; orange), Anderson–Darling test (AD; cyan), Lilliefors test
(LF; blue), and Kolmogorov–Smirnov test (KS; green) for different distributions and sample sizes. The magenta line shows each distribu-
tion, and the black dashed line shows a close normal distribution to each distribution. The distributions cover a variety of standardized
skewness (

����
b1

√
) and kurtosis (b2).
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from an observation. The regularization provides tempo-
rary iterations for the local PF, which is a posterior temper-
ing strategy. This iterative approach also improves the filter’s
ability to sample from non-Gaussian posterior densities,
even though it fits a limited number of moments. The itera-
tions consist of a factorization of particle weights, thus pro-
viding a natural framework for combining the local PF with
alternative filters to reduce the impact of sampling error.
When provided with Gaussian likelihoods, a partial update
performed by a PF can adjust particles to more closely re-
semble samples from a Gaussian, even if the prior exhibits
a complex nn-Gaussian shape. The resulting intermediate
update then makes the EnKF an appropriate choice for the
remaining update (Grooms and Robinson 2021). P22 intro-
duced the hybrid parameter k, which is an Nx-dimensional
vector that determines when to switch from a PF update to
a parametric filter update. For the iterative PF, the hybrid
parameter k and “the target effective sample size Nt

eff” are
required to be specified by users. PF updates are repeated until

∑
Nk

k51bj,k 5 kj for 0 # kj # 1 at the jth grid point, where Nk

is the number of iterations. Here, bj enforces a minimum
Neff for weight at the jth grid point. When Neff is below
Nt

eff, b is determined adaptively by Eq. (28) in Poterjoy
et al. (2019) so that Nt

eff is satisfied. Following the initial set
of local PF iterations, the last adjustment is performed us-
ing an EnKF with the measurement error variance R in-
flated by the factor 1/hj, where hj 5 1 2 kj. For example, to
hybridize the PF and EnKF in the ratio of 7:3 at the jth grid
point, kj is set to 0.7 in the first place, and PF updates are
repeated until ∑

Nk

k51bj,k 5 kj 5 0:7. The value of bj,k is de-
termined adaptively based on Nt

eff in the kth iteration,
which means Nk is determined adaptively as well and dif-
ferent at each grid point. Therefore, since Nk at jth grid
point is determined by bj,k, Nk becomes larger when Nt

eff is
set to a larger value, and vice versa. Last, an EnKF update
is performed with R inflated by a remaining factor hj, where
hj 5 1 2 kj 5 0.3. Note that, for simplicity, P22 uses the
same value for kj at all grid points and in all data assimi-
lation cycles.

In the current study, we allow k and h to be adjusted
adaptively through space and time during data assimilation,
while these values are held constant and set heuristically
through tuning in P22. We repeat the PF update until SWT
suggests that particles are samples from a Gaussian;∑

Nk

k51bj,k up
to this point is defined as kj, and the value of hj is determined
by 1 2 kj. Once kj at all grid points has been determined, we
perform the serial ensemble square root filter (serial EnSRF;
Whitaker and Hamill 2002) with R inflated by the inverse of
hj as the final adjustment. Thus, the Kalman gain matrix at
the jth grid point when the ith observation is assimilated is
described as follows:

Kj 5 E
f
jD

fT
i D

f
iD

fT
i 1

1
hj

Ri

( )21

, (9)

where Ef consists of model-space forecast ensemble perturba-
tions and Df consists of observation-space forecast ensemble

perturbations, with both matrices normalized by 1/
����������
Ne2 1

√
.

Note that the use of a tangent linear measurement operator
in (9) is avoided in the current study and most others by as-
similating observations serially.

In the case that SWT does not detect Gaussianity during Nk

iterations at the jth grid point, kj and hj become 1 and 0, re-
spectively, and no EnKF update is performed at the grid
point. Similarly, if SWT detects Gaussianity in the first itera-
tion at the jth grid point, then kj 5 0 and hj 5 1, and no PF
update is performed at the grid point. Thus, in situations
where the posterior is clearly non-Gaussian, the filter can
have the option of retaining the local PF. The hybrid ap-
proach aims to obtain an intermediate distribution that is
closer to Gaussian than the prior distribution by the PF up-
dates, and to make this intermediate distribution closer to
Gaussian by the EnKF. In cases that we cannot obtain an in-
termediate distribution closer to Gaussian, we can perform
the iterative PF updates alone, without using EnKF in the last
step, which is the strength of the adaptive strategy. The ad-
vantage of using the EnKF in the last step if a Gaussian is en-
countered during iterations is purely due to it being a more
robust choice when ensemble sizes are small (and the distribu-
tion is indeed Gaussian).

As in P22, the Nt
eff still needs to be specified by the user

and this parameter can influence the results. In general, Nt
eff

determines when filter updates are made during iterations.
High Nt

eff typically leads to more iterations and a larger final
effective ensemble size than a small Nt

eff. This choice is ulti-
mately a trade-off between the frequency of performing SWT
and cost of implementation.

Since the computational cost of SWT is not expensive, the
adaptive approach introduced in the current study, which in-
corporates the statistical test into the local PF introduced by
P22, is generally less computationally expensive than the iter-
ative LPF. Under most circumstances, the hybrid requires
fewer iterations, thus leading to a cost saving. Nevertheless,
the PF introduced by P22 is computationally more costly than
pure EnKF because of the use of regularization and temper-
ing. For more information, please refer to Poterjoy (2022a)
and P22.

Note that k and h are uniquely specified for each observation-
space prior variable as well. In this case, they are Ny-
dimensional vectors and we again use SWT to determine
when each element of observation-space forecast ensembles
may follow a Gaussian distribution. The k and h defined for
the observation-space are used for the observation-space
filter updates.

In summary, the adaptive hybrid PF–Serial EnSRF with
SWT are realized by Algorithms 1–2. In both algorithms, xf

and xa are Nx-dimensional background and analysis vectors,
respectively, and yo is an Ny-dimensional set of observations.
The observation operator H maps a model state to its corre-
sponding observation state:

yf 5 Hi(xf ), (10)

where Hi is the measurement operator for the ith obser-
vation.
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Algorithm 1Adaptive mixed PF–EnKF update with SWT

1: function pf_enkf_hybrid

2: k 5 1

3: k 5 0.0 . Vector with Nx dimensions

4: k_residual 5 1.0 – k

5: while max(k_residual) . 0 do . Tempering

6: for j 5 1: Nx do

7: if k_residual (j) . 0 then

8: SWT_result $ WT(xfj ) . Shapiro-Wilk Test

9: if SWT_result 5 Gaussian then

10: hj 5 k_residual(j)

11: k_residual(j) 5 0.0

12: end if

13: end if

14: end for

15: (bk, k_residual) $ Regularization(k_residual)

16: for i 5 1: Ny do

17: xa $ The Local PF (xf , yoi ,bk) . The Local PF core

18: xf $ xa

19: end for

20: k 5 k 1 1

21: end while

22: xa $ EnKF_tempered(xf, yo, h) . EnKF as the last adjustment

23: end function

Algorithm 2 Serial EnSRF update with inflated R

1: function EnKF_tempered(xf, yo, h)

2: for I 5 1: Ny do

3: yf 5Hi(xf )
4: Ef 5

1����������
Ne 2 1

√ [dxf1| · · · |dxfNe
]

5: D
f
i 5

1����������
Ne 2 1

√ [dyf1| · · · |dyfNe
]

6: for j 5 1: Nx do

7: Kj 5 E
f
jD

fT
i D

f
iD

fT
i 1

1
hj

Ri

( )21

8: end for

9: xa 5 xf 1 K(yoi 2 yf )

10: a 5 11

����������������
Ri

D
f
iD

fT
i 1 Ri

√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠21

11: K̃ 5 aK

12: Ea 5 Ef 2 K̃D
f
i

13: xa 5 xa 1 Ea

14: xf $ xa

15: end for

16: end function

4. Numerical experiments with low-order models

This section explores the behavior of the newly developed
method through numerical simulations. In the first experi-
ment, we use a simple univariate problem to illustrate the dif-
ference of the adaptive hybrid method between iterative
EnKF and bootstrap PF using tempering. In the second ex-
periment, we use the 40-variable dynamic model of Lorenz
(1996) to compare the advantages of the adaptive method
over EnKF, the local PF, and hybrid PF–EnKF with fixed val-
ues of k and h. These experiments use simulated measure-
ments to target several scenarios, such as varying spatial
density, highly nonlinear dynamics, mixed measurement oper-
ators, and unresolved model error. The last experiment uses
an idealized kinematic vortex, which was used in Poterjoy
(2022a) to replicate findings from real-data applications. The
kinematic vortex model allows us to generate observations
that emulate realistic observations for an application con-
taining large spatial dependence across variables, while
retaining great flexibility in our construction of data assi-
milation experiments. Among the common parameters used
for idealized data assimilation applications, such as observa-
tion error variance, observation locations, and ensemble size,
these experiments contain parameters that indirectly control
the shape of the full multivariate prior, thus allowing for an
analysis of the adaptive hybrid technique under controllable
conditions.
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a. Univariate application

Using a univariate example, we can visualize how the newly
proposed adaptive hybrid method works compared to filters
that use iterative strategies. We compare three iterative filters
in this section: EnKF with the multiple data assimilation
scheme (EnKF–MDA) proposed by Emerick and Reynolds
(2012), bootstrap filter adopting the iterative approach (IPF),
and a hybrid of the IPF and EnKF (adaptive IPF–EnKF). The
number of iteration is set to four for EnKF–MDA and IPF
for this demonstration. For EnKF–MDA, when the same ob-
servation is assimilated Na times, the inflated measurement
error covariance matrix is used:

K 5 EfDfT(DfDfT 1 aiR)21, (11)

where

∑
Na

i51

1
ai

5 1: (12)

In this experiment, we use ai 5 4 for i 5 1, … , Na, where
Na 5 4. For further details on EnKF–MDA, we encourage
readers to review the mathematical descriptions in Emerick and
Reynolds (2012). The IPF also uses a factorization of the likeli-
hood to break the PF update step into a sequence of four

updates, namely, bi 5 1/4 for i 5 1, … , Na, where Na 5 4. For
the adaptive IPF–EnKF, we first set bi 5 1/8 and repeat the
bootstrap PF update until SWT detects that prior members are
samples from a Gaussian. We then replace the remaining PF
update with an EnKF update using R inflated with the inverse
of the remaining likelihood [1/(12 k)5 1/h]. Note that the
multiple updates in EnKF–MDA and IPF are identical to single
updates of each because the operator is linear in this example.

Consider the example shown in Fig. 2, where 104 prior
members are updated using an observation whose value is 4
and observation error standard deviation is set to sy 5 0.8.
Among the 104 prior members, three quarters are selected
from N(24, 1.22), while the rest are from N(3.5, 1.22), whose
mean value is smaller than the observation. Therefore, the
prior ensemble is a bimodal distribution. Using the same prior
for all three filters, Figs. 2a–c show the posterior distribution
after the first iteration. In all cases, we can see that each filter
shifts the ensemble toward the observation; however, the
EnKF–MDA inherits the bimodal distribution of the prior for
the posterior distribution, while the IPF and IPF–EnKF correctly
retain a single mode.1 The bimodal posterior distributions in the

FIG. 2. A univariate example of how the updates differ in each iterative filter for (left ) EnKF–MDA, (center) IPF, and (right) adaptive
mixed IPF–EnKF. Each row corresponds to an iteration. The blue and red lines indicate marginal prior and posterior pdfs, respectively.
The black dashed line indicates the observation likelihood.

1 For the provided ensemble size, the last iteration of the IPF is
an accurate estimate of the true Bayesian posterior.
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EnKF–MDA are not relieved by the completion of all iterations
(Fig. 2j). In the IPF, after all the updates, the posterior pdf is rela-
tively close to the likelihood of the observation, but exhibits
negative skewness because numerous particles remain in the
leftmost mode (Fig. 2k). In the adaptive IPF–EnKF case,
SWT detected Gaussianity in the distribution of the ensem-
bles after three iterations of the bootstrap PF (Fig. 2i), and
then EnKF was performed using R inflated by 8/5, which is
the inverse of the remaining observation error variance (Fig. 2l).
As a result, the IPF–EnKF posterior is close to the IPF, indicat-
ing that the hybrid method correctly transitioned to the partial
EnKF step once a Gaussian distribution was detected. Further-
more, we emphasize that the univariate application is presented
for illustration only, as the IPF–EnKF is not expected to provide
benefits over the IPF when the ensemble size is large.

b. 40-variable dynamical system

1) EXPERIMENTAL DESIGNS

For the next set of experiments, we assess the proposed
adaptive hybrid strategy through idealized numerical experi-
ments with the Lorenz 40-variable model (Lorenz 1996;
Lorenz and Emanuel 1998), denoted L96 hereafter. The
model consists ofNx equally spaced variables and is defined by

dxi
dt

5 (xi11 2 xi22)xi21 2 xi 1 F, (13)

where i 5 1, 2, …, Nx with cyclic boundaries: xi1Nx 5 xi and
xi2Nx 5 xi. The model is integrated forward numerically using
the fourth-order Runge–Kutta scheme and a model time step
of 0.05 nondimensional units, which is corresponding to 6 h
(Lorenz 1996). As in Lorenz (1996), we fix Nx at 40 and use
F5 8.0, except for one set of experiments that consider an im-
perfect model case; in this case, measurements are simulated
from a model trajectory with F 5 8.0, but the model forcing F
is fixed at 9.0.

Experiments include three forms of measurement operator
H as in Kurosawa and Poterjoy (2021): “Linear Case,”

“Nonlinear Case 1,” and “Nonlinear Case 2” use H(x)5 x̂,
H(x)5 x̂ + x̂, and H(x)5 log[ABS(x̂)], respectively. Here, x̂
is a subset of Ny variables in x chosen by H, and ABS stands
for the absolute value of each element. Uncorrelated Gaussian
errors selected from N(0,s2

yI) are added to each operator:
sy 5 1.0 for the first two experiments, while sy 5 0.1 for the
third case because of the smaller information content pro-
vided by this observation. All experiments use Ny 5 20 obser-
vations applying one or two of the operators. When only one
observation operator is used, there are three settings: a setting
with evenly distributed observations and F 5 8.0 (“normal”),
a setting with evenly distributed but F 5 9.0 (“model error”),
and a setting with missing observations in some places (“data
void”). In contrast to the setting where observations are ho-
mogeneous throughout the domain, the “data void” setting
is designed to target the heterogeneous observation net-
work of real atmospheric models. Note that for this setting,
we set the observation points at grid points 1–10, 21–30. In
the “mix” case, two observation operators are used, namely,
the first and the second half of the observation points use
different observation operators. The experimental settings
for each of these cases are summarized in the section of Ta-
ble 3.

All experiments in this section use an observation fre-
quency of 6 h. Observations are assimilated over a 10-yr pe-
riod, and root-mean-square errors (RMSEs) from the last
9 years are used to quantify the accuracy of the posterior anal-
yses, ignoring the first year spin up period. In this set of ex-
periments, we perform 100 parallel trials out of an abundance
of caution. For localization, we use the fifth-order correlation
function controlled by a radius of influence (ROI) given by
Gaspari and Cohn (1999). For posterior inflation, the current
study adopts the strategy known as relaxation to prior pertur-
bation (RTPP; Zhang et al. 2004) after EnKF update. Similar
to the a used in the relaxation method, for the local PF, we
use a mixing parameter g to maintain particle diversity during
updates in (8). When the ensemble size is small, this parame-
ter works to prevent filter divergence. g is a scalar between

TABLE 3. Configuration of cycling data assimilation experiments.

Experimental settings

Expt name H(x) F Observation points

Linear Case x 8.0; 9.0 Evenly distributed; data void
Nonlinear Case 1 x2 8.0; 9.0 Evenly distributed; data void
Nonlinear Case 2 log(|x|) 8.0; 9.0 Evenly distributed; data void
Mix Case 1 x and x2 8.0 Evenly distributed
Mix Case 2 x and log(|x|) 8.0 Evenly distributed
Mix Case 3 x2 and log(|x|) 8.0 Evenly distributed

Parameter filter settings

Ne ROI a, g

10 2; 1 0.3
20 5; 1 0.3
40 7; 2 0.3
100 9; 3 0.3
300 9; 3 0.3
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0 and 1, and acts to increase diversity in particles without modi-
fying prior or posterior error variance. Each time the particles
in state space are updated, the prior particles are mixed with
the resampled particles (P22). The target Neff is fixed at
Nt

eff 5 0:5Ne for all experiments. We configure the number of
members 10, 20, 40, 100, and 300, and arbitrarily tune all filter
parameters, namely, ROI, a, and g, for each ensemble size.
For the “normal” and “mix” settings, ROIs for Ne 5 10, 20,
40, 100, and 300 are 2, 5, 7, 9, and 9, respectively. On the other
hand, to ensure the stability of the experiments, for the “data
void” and “model error” settings, ROIs for Ne 5 10, 20, 40,
100, and 300 are 1, 1, 2, 3, and 3, respectively. The settings of
filter parameters are summarized in the bottom section of
Table 3. Under each experimental setting, we performed a to-
tal of 12 experiments, one in which the value of k is estimated
adaptively, and the others in which k is fixed at 0.1 increments
from 0 to 1. Note that, in this section, the inflation and locali-
zation parameters for EnKF, the local PF, and hybrid experi-
ments are unified, so we limited this tuning to experiments
that use the LPF and EnKF alone. The tuning step is compli-
cated for hybrid implementations, since we would have differ-
ent optimal values for ROI and other parameters as soon as
we change the k value. This feature makes it difficult to iden-
tify optimal parameters in a cost-effective manner. While we
acknowledge this limitation in the comparisons, we note that
hybrid configurations still tend to outperform the LPF and
EnKF despite not following a rigorous tuning. In other words,
we believe that the use of optimal parameters may slightly
change the results of the following experiments, but it will not
change the conclusion of this section.

2) RESULTS

We summarize the results for the “normal” setting in Fig. 3,
and the mean values of k in the adaptive experiments with
this setting are shown later (see Fig. 8a). In Linear Case
(Fig. 3a), when the number of members is small, the higher
the ratio of the EnKF, or the closer the value of k is to zero,
the lower the RMSE. However, with 40 members, the experi-
ment that performs partial local PF is optimal (k 5 0.3); after
40 members, the performance of the EnKF hardly improves
as the number of members increases, and in the experiments
with 300 members, pure EnKF shows the worst score. Here,
since the sampling error decreases as the number of particles
increases, it would seem that using more of the local PF up-
date would give better results. However, for this particular
model and a linear observation operator, this is not the case.
Even with Ne 5 300, the best performing experiments use a
factorization that amounts to 70% of the EnKF increment
being used. The experiment that determines the value of
k adaptively shows less optimal but suitable results for smaller
ensemble sizes}with the added benefit of not needing to be
tuned. As the number of members increases, however, the sam-
ple size for SWT increases, thus making the test more accurate.
Increasing the ensemble size also increases the rejection rate
of the null hypothesis, which is a desirable property. While the
mean value of k becomes larger as the ensemble size increases,
the value converges slowly to 0.2 (Fig. 8a). The L96 priors remain
close to Gaussian for most data assimilation cycles when using a
sufficiently dense network of observations with linear measure-
ment operators, thus leading us to conclude that SWT operates
appropriately for this application.

FIG. 3. Mean analysis RMSEs of the 12 experiments with different settings of k as a function
of ensemble size. Results are shown for (a) Linear Case, (b) Nonlinear Case1, and (c) Nonlinear
Case2. Values are from the average of the last 9 years with 100 parallel trials.
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Results from Nonlinear Case 1 are shown in Fig. 3b. With
Ne 5 20–40, the trend is the same as in the Linear Case: the
experiments with a more significant percentage of the EnKF
show better scores. However, this feature is maintained even
with large ensemble sizes. This is because of the precision and
frequency of the observations compared to ones in Linear
Case, as described in Kurosawa and Poterjoy (2021). Since
model variables are around the magnitude of O(10), the non-
linear operator H(x)5 x̂ + x̂ with sy 5 1.0 provides very pre-
cise information to characterize the posterior estimation. This
fact, combined with the frequency of measurements, makes
Gaussian estimation more appropriate, as forecasts yield prior
members that are generally close to the truth. Therefore, we
can confirm that k in the adaptive experiment uses a larger
percentage of the EnKF than in Linear Case (see Fig. 8a).

Figure 3c shows the mean RMSEs from experiments that
use measurements simulated with Nonlinear Case 2. In ex-
periments using this observation network, a situation occurs
in which the nonlinearity in the application becomes much
larger than the sampling error in the prior and posterior distri-
butions estimated by the ensemble. Owing to the strong non-
linearity of the observations, experiments using mainly the
Gaussian-based method struggle to provide an accurate
RMSE. In particular, the pure EnKF diverges, even with
Ne 5 300. The mean value of k in the adaptive experiment
shows that most of the update is used for the local PF (Fig. 8a).
This result occurs as the strongly nonlinear observation opera-
tor tends to induce skewness in prior distributions, and SWT
frequently rejects the null hypothesis.

Based on the above results from the “normal” setting, results
from “mixed” observation networks yield intuitive results

(Fig. 4). For example, in the case where the observation oper-
ators H(x)5 x̂ and H(x)5 x̂ + x̂ are combined, the experi-
ments with larger values of k tend to produce worse scores
(Fig. 4a). On the other hand, experiments using strongly non-
linear operators experienced the best performance with small
values of k, and became unstable when the EnKF contribu-
tion was too large. As such, we consistently find that the ex-
periments with a value of k close to 0.5 are very stable. The
partial update by the local PF adjusts particles to a Gaussian-
like distribution, providing an optimal prior distribution for
the EnKF update. The adaptive experiment also shows a
satisfactory performance in the case of any combination of
observation operators. We can see that using SWT is able
to estimate the optimal k according to each observation
operator.

We summarize the results for the “data void” setting in
Fig. 5. Mean RMSEs are uniformly higher than the “normal”
setting with any observation operators despite using the
smaller localization scale. Notably, in Nonlinear Case 2, sev-
eral fixed experiments diverged, but the experiments with the
appropriate blend of the EnKF and the local PF (k 5 0.3–1.0)
are stable (Fig. 5c). The mean value of k used in the adaptive
experiment is close to 1 (Fig. 8b). We note that this experi-
ment shows slight advantages over experiments that keep k

fixed near 1, thus underscoring the importance of allowing k

to change over space and time.
Last, results obtained from simulated “model error” experi-

ments show elevated errors for all experiments, regardless of
observation operators in Fig. 6. The presence of model errors
means that the prior variance can be quite large, which leads
to more frequent non-Gaussian prior distributions for L96.

FIG. 4. As in Fig. 3, but for (a) Mix Case1, (b) Mix Case2, and (c) Mix Case3.
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The hybrid strategies with a value of k close to 0.5 show
clear advantages in this regime. The parametric (Gaussian)
assumption that follows the PF steps in hybrid configura-
tions allows the filter to more easily adjust solutions for ob-
servations that lie outside the span of the ensemble. Hence,

it shifts particles closer to observations in a manner that is
not permitted by the PF}for variables that are detected to
have Gaussian errors.

To investigate the behavior of SWT specification of k for
these simulations, we examine a sample time series of prior

FIG. 6. As in Fig. 3, but using an imperfect L96 model for forecast steps.

FIG. 5. As in Fig. 3, but using the data void observation network.
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ensemble variance and estimated k for the experiment using a
linear measurement operator (Fig. 7). The plotted values
come from the first variable of the L96 model in the first trial
of the experiments with ensemble size Ne 5 300. Because of
an imperfect model, the prior variance fluctuates significantly
over the entire period. When the prior distribution has a larger
variance, the nonlinear model dynamics can more readily pro-
duce non-Gaussian priors, which SWT successfully detects. For
this example, the only factor that can contribute to non-Gaussian
priors is the nonlinear model itself as the measurement operator
is linear. Hence, fluctuations of the ensemble variance and k are
highly correlated. In Fig. 7, the time- and space-average value of
k over the period is 0.2655, which is very close to the value
0.2766 in Fig. 8b (note that the value of k in Fig. 7 is from the first
variable in the L96 model, while in Fig. 8 is from the average of
all variables in the model). As in the “data void” simulations, the
experiments with adaptively estimated k again show improve-
ments over experiments with values of k that are configured to

use close to the average mean estimated k, but fixed over space
and time (Fig. 6a). In general, we find that choosing k adaptively
is beneficial in “model error” experiments, owing to its ability to
maintain filter stability without rigorous tuning. The sporadic
non-Gaussian priors produced by L96 in “model error” experi-
ments introduce a major challenge that mimics the expected be-
havior of real weather systems.

Based on the above results, the statistical hypothesis testing
approach yields adequate hybrid factor estimates in all situa-
tions we examined for this study. Moreover, the approach has
significant value for more realistic applications, such as non-
homogeneous observation networks and unknown model pro-
cess error. We expect similar benefits for geophysical problems
that are characterized by a variety of dynamic instabilities as
well. Furthermore, the proposed adaptive hybrid method avoids
the need to tune heuristic parameters, such as the hybrid factor,
which we find to be sensitive to observation operators, observa-
tion density, and model process uncertainty.

FIG. 8. Mean estimated k of the adaptive hybrid experiments as a function of ensemble size.
Results are shown for (a) “normal” and “mix” settings in Figs. 3 and 4 and (b) “data void”
and “model error” settings in Figs. 5 and 6. Values are from the average of the last 9 years with
100 parallel trials.

FIG. 7. Time series of ensemble spread (red) and estimated k (blue) in adaptive hybrid experi-
ments for Linear Case with “model error” setting. Values are from the first variable of the L96
model in the first trial of the experiments with ensemble size Ne 5 300. The correlation coeffi-
cient between the pair of time series is indicated in top right.
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c. Idealized vortex model

In contrast to the low-dimensional applications used in the
previous subsections, realistic atmospheric forecast models
have several variables at each grid point, such as air tempe-
rature, winds, pressure, and specific humidity. These variables
also exhibit large spatial error dependence with one another,
which is not accounted for in adaptive choices for k. As such,
an observation of one variable must be used to update all col-
located and nearby variables; for EnKFs, this step considers
prior error covariance across each variable. Furthermore, ex-
tending k to be the same dimension as the full state vector,
rather than the grid dimension, would bring additional algo-
rithmic complexity to the proposed hybrid filter. To address
the problem of collocated variables for estimating k, a natural
choice is to perform the hypothesis test using all variables that
are expected to be correlated with that variable at a grid
point, i.e., by performing a test for multivariate normality.
The numerical experiments performed in this section serve
the purpose of illustrating the advantages of optimally ad-
justed k estimated via SWT extended to the test for multi-
variate normality proposed by Royston (1983). Considering
marginal PDFs in the test for multivariate normality is ex-
pected to provide a reasonable k for data assimilation updates
that account for correlations between collocated variables,
which is an important practical feature of the proposed hybrid
method in real weather applications, as the transition between
the local PF and EnKF updates are decided across grid points
rather than state variables. The method, however, still ne-
glects dependence for variables at different grid points, which
is one theoretical shortcoming.

The current section provides an illustrative comparison of
the EnKF, the local PF, and hybrid updates using a low di-
mensional application that mimics a common challenge for fil-
tering geophysical flow, namely, the problem of assimilating
measurements for mesoscale weather features that are not
well constrained by measurements.

1) EXPERIMENTAL DESIGNS

Adopting the same application introduced in Poterjoy (2022a),
we will reproduce the data assimilation challenge posed by
alignment errors associated with mesoscale weather features
by modeling a vortex wind field with a Rankine vortex profile
(Acheson 1990). The model produces a case of a single vortex in
zero-mean flow, but position uncertainty. The Rankine vortex
consists of a wind field exhibiting uniform vorticity in the vortex,
and an outer region of zero vorticity. For cylindrical coordinates
with the origin chosen to be the vortex center, and assuming that
all nonzero vorticity is uniformly distributed within a circle of
radius Rmax, the tangential winds uu are a function of radius r:

uu 5

Uu

r
Rmax

, r , Rmax

Uu

Rmax

r
, r$Rmax

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (14)

where Uu is maximum wind speed. Both the radial wind compo-
nent (ur) and vertical wind component (uz) are assumed to be

zero. For this demonstration, we transform winds into Cartesian
coordinates so that the model state vector comprises zonal (u)
and meridional (y) wind components; i.e., x5 [u, y]T.

The current study generates vortices on a two-dimensional
Cartesian region consisting of 91 3 91 equally spaced grid
points. To generate a prior sample, we first designate a control
state with the center of the vortex located at (iCTRL

c 5 46,
jCTRL
c 5 46), and UCTRL

u 5 30m s21 and RCTRL
max 5 12. Then,

the position and wind parameters of each vortex are randomly
drawn independently from a Gaussian distribution, and added
to the control vortex parameters. That is, the center of each
vortex (inc , j

n
c ) is sampled from N(iCTRL

c ,s2
p) and N(jCTRL

c ,s2
p),

respectively, for n 5 1, … , Ne, where sp is a prescribed
position error standard deviation that changes for each prior.
Un

u and Rn
max of each vortex is drawn from N(UCTRL

u , 1) and
N(RCTRL

max , 1), respectively.
Observations are generated by uniformly selecting points

from within the scan area of a hypothetical Doppler radar
with a radius of 30 grids, placed at coordinates (iradar 5 25,
jradar 5 25) in the lower-left corner of the domain. We pro-
duce each observation by projecting the truth state wind in
the direction of the hypothetical radar beam pointing outward
from the radar. In this experiment, the errors added to each
observation are drawn from N(0,s2

o) for so 5 3, and we set
the number of observations Ny to be 100. Figure 9a shows the
value of uu for the cross section through the center of the con-
trol state. Reproduced from Poterjoy (2022a), Fig. 9b shows a
single 15 m s21 wind speed contour for the Rankine vortex on
the 2D domain. The scan region by the virtual radar is indi-
cated by the curved segment in the lower left part of the do-
main, which covers only one quadrant of the vortex, and the
green and red dots indicate the location and magnitude of the
measurements (Fig. 9b).

As in the experiment with the L96 in section 4b, out of an
abundance of caution, we perform 3000 parallel trials with
unique sets of priors, true solutions, and observations in order
to capture the range of plausible outcomes for this applica-
tion. To perform each trial, for the truth state, we generate
the center (itc, j

t
c), maximum wind speed Ut

u, and radius Rt

from a Gaussian distribution as well as other prior ensemble
members. This process allows us to create a state in which the
true value is indistinguishable from any prior member, i.e.,
the true value is also a sample from the prior distribution with
equal probability, which is a condition assumed when per-
forming data assimilation for real atmospheric models. The
truth state, which varies by each trial, is used to generate the ob-
servations and provides a reference for evaluating data assimila-
tion experiments performed for each trial. We repeat these
trials for several choices of position error standard deviation
sp 5 {0.0, 4.0, 8.0, 12.0} and ensemble size Ne 5 {40, 100, 300}.
For reference, Fig. 10 shows the variability of the initial ensem-
ble members according to each sp withNe 5 40.

We performed a total of 12 experiments, one in which the
value of k is estimated adaptively, and the others in which k is
spatially constant between 0 and 1, using increments of 0.1. In
the adaptive hybrid experiment, we use SWT extended to the
test for multivariate normality; that is, the Gaussianity in the
prior samples is detected using two variables, u and y. In this
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demonstration, we assimilate the observations in each of the k
settings using each of the choices of prior and then calculate
the RMSEs of the posterior mean relative to the true wind ve-
locity. All experiments use the localization function f:

f 5 exp 2
1
2

d(i,j)
sloc

[ ]2⎧⎪⎪⎪⎨⎪⎪⎪⎩ ⎫⎪⎪⎪⎬⎪⎪⎪⎭, (15)

where d(i, j) is the physical distance between grid points i and j,
and sloc is the localization parameter to scale the width of local-
ization, which is set to 2000 in the current study.

2) RESULTS

This subsection discusses results obtained by performing
single-cycle data assimilation using the described sets of

observations and prior members. Figure 11 shows the posterior
RMSEs for four experiments as examples: EnKF (k 5 0.0),
the local PF (k 5 1.0), PF–EnKF with k 5 0.5, and PF–EnKF
with adaptive k estimation. For experiments that use sp 5 0.0
for the prior, each data assimilation method shows low
RMSEs that are visibly similar (first row of Fig. 11). This
finding is expected because the small sp 5 0.0 leads to the
Gaussian assumption being valid (Poterjoy 2022a). However,
as the value of sp increases, each experiment yields vast dif-
ferences in the upper right portion of the domain where each
filter must infer wind estimates from distant observations.
This application is especially problematic for the EnKF, as lin-
ear updates do not properly capture nonlinear dependence in
winds across the vortex (Poterjoy 2022a). While the local PF
and PF–EnKF produce smaller mean RMSEs than the EnKF,
we note that these errors also continue to decrease as the
number of members increases, because of the decrease in
sampling error. Furthermore, compared to the EnKF and lo-
cal PF experiments, both hybrid experiments show more accu-
rate results across all domains, which demonstrates that the
hybrid PF–EnKF method is effective at shifting particles into
an approximate Gaussian before applying the EnKF step}
even for the highly non-Gaussian vortex application discussed
in Poterjoy (2022a).

Comparing experiments with fixed and adaptive k, Fig. 12
shows the grid points over the domain where a specified value
of k produced the smallest RMSEs for each choice of prior.
For all settings, the adaptive estimate yields the smallest
errors outside of the vortex, thus reflecting diversity in opti-
mal k in this region. When sp 5 0, experiments with a value
of k fixed near 0.5 show the best results near the vortex center
(Figs. 12a–c). We suspect this result occurs because the loca-
tion of the prior and true vortex centers are the same for all
prior distributions when sp 5 0, but since R is drawn from
N(RCTRL, 1), the winds exhibit bimodal behavior, which is
controlled by parameter R in (14); recall, this parameter
divides the domain into regions of zero and nonzero}but
constant}vorticity. Since the region near the vortex center is
characterized by the presence of both zeros and nonzeros, it
is conceivable that the case of k 5 0.5, where both PF and
EnKF can be used in a balanced manner, happens to be the
most optimal. Therefore, a fixed value of k can be identified
via rigorous tuning, rather than resorting to hypothesis test-
ing. When sp . 0 and a sufficiently large ensemble size is
used (e.g., Ne 5 300), SWT correctly identifies values for k

that outperform fixed values for k over most of the domain
(Figs. 12f,i,l). Prior vortices are no longer collocated as sp in-
creases, so the region where fixed values for k are optimal
gradually extends outward from the center.

We also examine the mean value of k (averaged over trials)
in the experiments where k is adaptively adjusted (Fig. 13).
First, for the case of sp 5 0.0, the area close to the center of
the control vortex, where experiments with a value of k fixed
near 0.5 corresponds to the location where estimated k is
about 0.2–0.5 in the first row of Fig. 13. This indicates that the
area has a low percentage of the local PF updates compared
to the fixed experiment. For the cases of Ne 5 40 and 100, the
areas where the experiment using the adaptively adjusted k is

FIG. 9. (a) Tangential wind speed as a function of grid points, cal-
culated using the Rankine vortex model with point 46 as the center
location. (b) The 15 m s21 wind speed contours for the vortex
placed on a 2D grid; values greater than 15 m s21 are indicated by
the hatched region. The green and red markers indicate the loca-
tion and magnitude of radial wind observations created for a syn-
thetic radar located at coordinate (iradar, jradar). This figure is a re-
production of Fig. 8 in Poterjoy (2022a).
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inferior in Fig. 12 are generally estimated to have a value of k
less than 0.5 (the first two columns of Fig. 13). However, in
the case with Ne 5 300, the values of k in those locations are
generally more than 0.5, and the difference from the fixed ex-
periment is not significant (third column of Fig. 13). This may
be because the larger sample size used in SWT leads to more
frequent rejection of the null hypothesis, resulting in more
iterations of the local PF. Furthermore, the experiment with
estimated k is generally more stable in the other areas, far
away from the center, especially in the upper-right domains,
where there are no observations.

As in the previous subsections, the kinematic vortex experi-
ments illustrate the advantage of specifying k adaptively ver-
sus keeping this parameter fixed. In this demonstration,
however, k is estimated using u and y with SWT extended to
handle multivariate normality. Hence, results from this sec-
tion differ in that we successfully analyzed samples from mul-
tivariate probability distributions. The multivariate approach
is more practical for data assimilation with real atmospheric
models, when we need to consider correlation among collo-
cated variables. Furthermore, as noted by Poterjoy (2022a),
the non-Gaussian data assimilation problem constructed in
this section has univariate marginal distributions that are
close to Gaussian, but multivariate marginals for variables
across grid points that are far from Gaussian. In terms of
computing burden, high-resolution models, such as those
used for weather forecasting, are constrained by ensemble
size. As a result, detecting such characteristics with a lim-
ited number of ensembles to be utilized for operational
models is extremely challenging. Nevertheless, we find the
proposed SWT approach to be sufficient for identifying de-
viations from a multivariate normality for collocated winds,
which shows added value over a rigorously tuned hybrid
methodology that uses fixed specifications for k.

5. Discussion and conclusions

The current study introduces a novel approach to forming
an adaptive hybrid data assimilation method that mixes the
theoretical strengths and flexibility of particle filters with

Gaussian-based ensemble Kalman filters (EnKFs), which are
more resilient to bias in sample-estimated prior uncertainty.
For this purpose, we use a recently proposed PF by Poterjoy
(2022b), which introduces a regularization and tempering
methodology to improve filter performance when sampling
error is large. The tempering step consists of a factorization of
the particle weights, which provides a natural framework for
combining local PFs with alternative filters to mitigate the ef-
fects of sampling error. In addition to identifying portions of
the state space where a PF may provide more accurate mar-
ginal posterior estimates than an EnKF, the adaptive strategy
can switch between filters partway through data assimilation
steps. The latter property is beneficial when Gaussian assump-
tions are appropriate for posteriors but not for priors, which
is common when likelihoods are Gaussian. In this case, partial
updates performed by the PF can adjust the distribution of
particles to more closely fit a Gaussian, which allows for a
more effective use of EnKFs. To determine the timing
of the transition between these filter updates, we use the
Shapiro–Wilk test (SWT), which has excellent power among
omnibus tests to detect deviations from normality. The use
of SWT allows for accurate detection of Gaussianity even
when the ensemble size is small. SWT also requires minimal
computing time, thus permitting its use between PF itera-
tions, which can be carried out until prior sample distribu-
tions for marginals at each grid point are detected to be
Gaussian. Increasing the ensemble size also increases the
rejection rate of the null hypothesis and leads to a smaller
portion of updates being made by an EnKF, which is a
desirable property.

To examine the performance of the adaptive hybrid, this
study constructs numerous data assimilation experiments using
a low-dimensional dynamical model, which is characterized by
40 equally spaced variables on a periodic domain. In general,
the statistical hypothesis testing approach yields adequate esti-
mates of the hybrid factor in all situations considered in this
study. Given a homogeneous network of equally spaced obser-
vations, the adaptive formulations of the hybrid filter are as ac-
curate as the rigorously tuned hybrid parameters. The adaptive

FIG. 10. Variability of the initial ensemble members for (a) sp 5 0.0, (b) sp 5 4.0, (c) sp 5 8.0, and (d) sp 5 12.0 with ensemble size
Ne 5 40. Each colored line shows the 15 m s21 wind speed contours. The black dashed lines show the 15 m s21 wind speed contours of the
control state.
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approach also demonstrates clear advantages in experiments
containing heterogeneous observation networks and unknown
model process errors}in which case, the optimal choice of adap-
tive parameter varies temporally or across variables.

The study also examines practical challenges for adopting
the new method for real Earth system models, which are char-
acterized by multiple variables at common grid points and
large error correlations through space; e.g., modern weather

FIG. 11. Analysis RMSEs of velocity for 1) EnKF (k 5 0.0), 2) PF (k 5 1.0), 3) the experiment with k 5 0.5, and 4) with adaptive estimated k.
The position error standard deviation sp is (a)–(c) 0.0, (d)–(f) 4.0, (g)–(i) 8.0, and (j)–(l) 12.0. The ensemble size Ne is (left) 40; (center) 100; and
(right) 300. Values are from the average of 3000 parallel trials. The black dashed lines show the 15 m s21 wind speed contours of the control state.
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prediction models. The computational expense of such mod-
els limits the amount of tuning that can be performed for heu-
ristic parameters used during data assimilation, which can be
sensitive to observation operators, observation frequency, and
model process uncertainty. Therefore, this study adopts an ide-
alized kinematic vortex model to study the behavior of the
adaptive hybrid. This model permits large error dependence

across variables displaced over a two-dimensional domain,
and contains two variables (zonal and meridional winds) at
each grid point thus requiring a multivariate SWT to adap-
tively choose how to partition PF and EnKF updates. For this
application, the hybrid factor is estimated using SWT extended
to detect multivariate normality for ensembles of u and y

at each grid point. This approach allows the use of the

FIG. 12. The experiment with the lowest RMSEs out of the 12 different k cases over 3000 parallel trials. Color represents the best k
case, which produced the smallest RMSE, comparing fixed and adaptive k experiments. The black dashed lines show the 15 m s21 wind
speed contours of the control state.
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appropriate factor to account for multivariate marginal
distributions for updating the state variables, alongside
observation-space priors. Specifying the hybrid factor for col-
located variables also simplifies the algorithmic formulation
of the adaptive methodology, as it only requires the factor to
be specified for all grid points and observation-space priors
used during data assimilation. The experiments reveal spatial

patterns of adaptively chosen hybrid factors that result in
large PF updates in portions of the state space where Gauss-
ian assumptions are known to be incorrect, and are close
to the values identified at each grid point from rigorously
tuned experiments aimed at reducing posterior mean RMSEs.
These results encourage further testing for real geophysical prob-
lems that are characterized by a variety of dynamic instabilities.

FIG. 13. Mean value of k in the experiments with adaptive estimated k. Values are from the average of 3000 parallel trials. The black
dashed lines show the 15 m s21 wind speed contours of the control state.

K URO SAWA AND PO T ER J OY 123JANUARY 2023

Unauthenticated | Downloaded 01/09/23 01:39 PM UTC



In summary, the proposed adaptive hybrid method performs
well in idealized simulations that mimic data assimilation prob-
lems encountered for real geophysical modeling systems. Because
the new strategy relies on statistical hypothesis testing, it becomes
more stable when the ensemble size increases. The proposed
method obviates the need for tuning a hybrid parameter that in-
fluences when an EnKF is preferred over PF, which can depend
on a number of factors including the underlying model dynamics
and observation network. This property of the method has theo-
retical benefits for real Earth system models where rigorous tun-
ing of data assimilation parameters is not always feasible, and the
shape of error distributions is flow dependent. Last, this study
demonstrates how SWT can be extended to consider error de-
pendence for collocated variables. Further research will explore
the use of multivariate error dependence for variables across grid
points, which may be needed for prior distributions that are char-
acterized by strong nonlinear dependence for variables displaced
geographically.
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